4.7 Article

Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils

期刊

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
卷 174, 期 -, 页码 401-407

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.02.076

关键词

Heavy metals; Phosphate rock; Bone meal; Immobilization; Mine soil

资金

  1. National Natural Science Foundation of China [41371470]
  2. National Sci-Tech Support Plan [2015BAD05B02]

向作者/读者索取更多资源

The contamination of soil by copper (Cu) and lead (Pb) is a serious concern because of its high health risk via the food chain. Oxalic acid-activated phosphate rock (APR) and bone meal (BM) were applied to Cu and Pb co-contaminated soil to investigate their efficacy in the immobilization of Cu and Pb. APR and BM were applied into the contaminated soil (158.8 mg/kg total Pb and 573.2 mg/kg Cu) at four levels of dosages (0.1%, 0.5%, 2%, and 4%) and incubated for one year. The results demonstrated that the acid exchangeable Pb fraction in the soil treated with APR and BM decreased compared to the control, while there was no noticeable change in the acid exchangeable Cu fraction in the soil treated with either APR or BM. Meanwhile, the application of BM and APR increased the fraction of residual Cu and Pb in the polluted soils. Moreover, the addition of either APR or BM at the dose of 4% decreased the concentrations of CaCl2-extractable Cu and Pb in the amended soil, and the percentages of that reduction in the APR amended soils were 56% and 91% and in BM amended soils were 67% and 64%, respectively. The immobilization of Cu and Pb by APR and BM might be induced by the increased soil pH and soluble P contents in the amended soils. In general, BM is more effective than APR on the immobilization of Cu in polluted soil, while APR had greater efficiency than BM on the immobilization of Pb when the levels of amendments were above 2%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据