4.6 Review

Multiscale modeling and simulations of protein adsorption: progresses and perspectives

期刊

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.cocis.2018.12.004

关键词

Protein adsorption; Protein orientation; Protein conformation; Protein adsorption resistance; Molecular simulation

资金

  1. National Natural Science Foundation of China [21376089, 21776093, 21706197]
  2. Guangdong Science Foundation [2014A030312007]

向作者/读者索取更多资源

Protein adsorption, which shows wide prospects in many practical applications such as biosensors, biofuel cells, and biomaterials, has long been identified as a very complex problem in interface science. Here, we present a review on the multiscale modeling and simulation methods of protein adsorption on surfaces with different properties. First, various simulation algorithms (replica exchange, metadynamics, TIGER2A, and PSOVina) and protein models (colloidal, coarse-grained, and all-atom models) are introduced. Then, recent molecular simulation progresses about protein adsorption on different material surfaces (such as charged, hydrophobic, hydrophilic, and responsive surfaces) are retrospected. It has been demonstrated that the adsorption orientation of proteins on charged surfaces and hydrophobic surfaces can be controlled by the electrical dipole and the hydrophobic dipole of proteins, respectively. Superhydrophilic zwitterionic surfaces can resist protein adsorption because of the strong hydration. Under the stimuli of external conditions, the surface properties of materials can be modulated, and thus, the adsorption/desorption of proteins on responsive surfaces can be controlled. Finally, the future directions of molecular simulation study of protein adsorption are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据