4.6 Article

Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfa.2019.04.054

关键词

MXene; CNTs; 3D framework; Lithium-sulfur battery; Separator

资金

  1. National Natural Science Foundation of China [21706292]
  2. Hunan Provincial Natural Science Foundation of China [2017JJ3376]
  3. Hunan Provincial Science and Technology Plan Project, China [2017TP1001]
  4. Open-End Fund for the Valuable and Precision Instruments of Central South University

向作者/读者索取更多资源

The shuttling of polysulfide is still a major issue which greatly hinders the practical application of lithium-sulfur (Li-S) batteries. Here, we report a multifunctional separator for trapping polysulfide and reusing the active sulfur species in Li-S batteries. The multifunctional separator was fabricated by coating the commercial polypropylene (PP) separator with a three-dimensional (3D) interwoven framework structure composed of 1D carbon nanotubes (CNTs) and 2D Ti3C2Tx MXene nanosheets. Taking advantages of the excellent electrical conductivity and strong chemical interaction with polysulfide of Ti3C2Tx MXene, the ability in immobilizing and reusing of polysulfide for the multifunctional separator was significantly enhanced compared with pure CNTs modified separator. At mean time, the presence of CNTs effectively helps avoid the restacking of MXene nanosheets, resulting in an interfacial layer between separator and cathode with an interconnected conductive network, which can facilitate fast Li ion and electron transport and thus improve the rate capabilities and sulfur utilization. Moreover, the effect of MXene content on the structure and electrochemical performance were systematically investigated. At MXene content of 5% and CNTs/MXene mass loading of 0.16 mg cm(-2), the cell with CNTs/MXene-PP (CMP) separator delivered an initial capacity of 1415 mA h g(-1) at 0.1 C, a capacity retention of 614 mA h g(-1) after 600 cycles at 1 C with a low capacity decay of 0.06% per cycle in the 0.8-2.5 mg cm(-2) sulfurloaded cathode. Such 3D carbon nanotubes/MXene conductive framework provides great potential for developing efficient functional separator for high-performance Li-S batteries and can be easily applied in electrode materials for other electrochemical energy storage systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据