4.7 Article

Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants

期刊

CHEMOSPHERE
卷 225, 期 -, 页码 627-638

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.03.026

关键词

Cadmium toxicity; Melatonin; Wheat; Nitric oxide; Antioxidant system; Oxidative stress

资金

  1. University of Harran, Turkey [HUBAK-18221]
  2. Deanship of Scientific Research at King Saud University [RG-1438-039]

向作者/读者索取更多资源

Two independent trials were conducted to examine the involvement of nitric oxide (NO) in MT-mediated tolerance to Cd toxicity in wheat plants. Cadmium toxicity considerably led to a decrease in plant growth, total chlorophyll, PSII maximum efficiency (Fv/Fm), leaf water potential, potassium (K+) and calcium (Ca2+). Simultaneously, it caused an increase in levels of leaf malondialdehyde (MDA), hydrogen peroxide (H2O2), electron leakage (EL), cadmium (Cd) and nitric oxide (NO) compared to those in control plants. Both MT (50 or 100 mu M) treatments increased plant growth attributes and leaf Ca2+ and K+ in the leaves, but reduced MDA, H2O2 as well as leaf Cd content compared to those in Cd-stressed plants. A further experiment was designed to understand whether or not NO played a role in alleviation of Cd stress in wheat seedlings by melotonin using a scavenger of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) combined with the MT treatments. Melatonin-enhanced tolerance to Cd stress was completely reversed by the supply of cPTIO, which in turn considerably reduced the levels of endogenous NO. The results evidently showed that MT enhanced tolerance of wheat seedlings to Cd toxicity by triggering the endogenous NO. This was reinforced by the rise in the levels of MDA and H2O2, and decrease in the activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC. 1.11.1.6) and peroxidase (POD; EC. 1.11.1.7). The cPTO supply along with that of MT caused growth inhibition and a considerable increase in leaf Cd. So, both MT and NO together enhanced Cd tolerance in wheat. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据