4.7 Article

Aggregation and dissolution of engineering nano Ag and ZnO pretreated with natural organic matters in the simulated lung Check tor biological fluids

期刊

CHEMOSPHERE
卷 225, 期 -, 页码 668-677

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.03.080

关键词

Engineered nanoparticles; Natural organic matter; Simulated lung biological fluids; Aggregation; Release

资金

  1. National Natural Science Foundation of China [91543129, 91643105]
  2. Natural Science Foundation of Jiangsu Province, China [BK20181261]

向作者/读者索取更多资源

The increasing application of engineered nanoparticles such as silver nanoparticles (nAg) and zinc oxide nanoparticles (nZnO), results in their accumulation in environmental media. The environmental natural organic matter (NOM) adsorbed by these nanoparticles may have great effects on the aggregation and dissolution of metal] ions, which are interesting and important for the assessment of the inhalation risks of these airborne suspended NOM-coated nanoparticles to humans. Therefore, the aggregation and dissolution of nAg and nZnO pretreated with citric acid (CA), tartaric acid (TA) and fulvic acid (FA) in simulated lung biological fluids (artificial lysosomal fluid (ALF) and Gamble Solution) were investigated. The surface properties, morphology and size of the NOM-treated ENPs changed, but the crystalline phase was relatively stable when observed using surface-enhanced Raman scattering, transmission electron microscope, and X-ray diffraction. NOM treatment had no significant influence on the particle size of NOM-treated nAg and nZnO except for a decrease in the size of CA-treated nAg, and it could not promote the aggregation of NOM-treated nAg and nZnO except for the aggregation of TA-treated nAg in Gamble Solution or TA-treated nZnO in ALF. CA- and FA-treatments promoted the release of Zn2+ and Ag+, respectively, while no promotion was observed after TA-treatment. Therefore, NOM affects the release of Zn2+ and Ag+ from NOM-treated nAg and nZnO but does not promote the aggregation of NOM-treated nAg and nZnO, which influences the inhalation risk-based assessment. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据