4.8 Article

Hydroxide Ion Diffusion in Anion-Exchange Membranes at Low Hydration: Insights from Ab Initio Molecular Dynamics

期刊

CHEMISTRY OF MATERIALS
卷 31, 期 15, 页码 5778-5787

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.9b01824

关键词

-

资金

  1. National Science Foundation [CHE-1534374]

向作者/读者索取更多资源

Operation of anion-exchange membrane (AEM) fuel cells (AEMFCs) results in gradients in the cell that can lead to low-hydration conditions within the cell. It is therefore important to investigate hydroxide ion diffusion in AEMs with low water-to-cation ratios (lambda <= 4, lambda n(H2O)/n(cation)). In this work, ab initio molecular dynamics simulations are presented to explore hydroxide ion solvation complexes and diffusion mechanisms in model AEMs at low hydration. By changing the cation spacing within the AEM and the degree of hydration, six different idealized AEM models are created in which the water distribution is not uniform. It is shown that distinct water distributions impart unique OH- diffusion mechanisms that fall into three regimes. The observed mechanisms, nondiffusive, vehicular, and a mixture of structural and vehicular diffusion, depend on the presence or absence of a second solvation shell of the hydroxide ion and on the local water structure. The results suggest that the water distribution is a better descriptor than the value of lambda for classifying AEMs under low-hydration conditions. These results enable us to posit idealized mechanisms for the three diffusion regimes and to define requirements for promoting OH- conductivity in high-performance AEMFC devices operating under low-hydration conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据