4.8 Review

State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis

期刊

CHEMICAL REVIEWS
卷 120, 期 2, 页码 1438-1511

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.9b00223

关键词

-

资金

  1. China Scholarship Council (CSC)
  2. Centre National de la Recherche Scientifique (CNRS)
  3. University of Bordeaux

向作者/读者索取更多资源

Metal-organic framework (MOF) nanoparticles, also called porous coordination polymers, are a major part of nanomaterials science, and their role in catalysis is becoming central. The extraordinary variability and richness of their structures afford engineering synergies between the metal nodes, functional linkers, encapsulated substrates, or nanoparticles for multiple and selective heterogeneous interactions and activations in these MOF-based nanocatalysts. Pyrolysis of MOF-nanoparticle composites forms highly porous N- or P-doped graphitized MOF-derived nanomaterials that are increasingly used as efficient catalysts especially in electro- and photocatalysis. This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years. The major parts are catalysis of organic and molecular reactions, electrocatalysis, photocatalysis, and views of prospects. Major challenges of our society are addressed using these well-defined heterogeneous catalysts in the fields of synthesis, energy, and environment. In spite of the many achievements, enormous progress is still necessary to improve our understanding of the processes involved beyond the proof-of-concept, particularly for selective methane oxidation, hydrogen production, water splitting, CO2 reduction to methanol, nitrogen fixation, and water depollution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据