4.5 Article

A novel activation function for multilayer feed-forward neural networks

期刊

APPLIED INTELLIGENCE
卷 45, 期 1, 页码 75-82

出版社

SPRINGER
DOI: 10.1007/s10489-015-0744-0

关键词

Rectified hyperbolic secant; Activation function; Neural networks; Feedforward architectures

资金

  1. National Nature Science Foundation of China [61173106]

向作者/读者索取更多资源

Traditional activation functions such as hyperbolic tangent and logistic sigmoid have seen frequent use historically in artificial neural networks. However, nowadays, in practice, they have fallen out of favor, undoubtedly due to the gap in performance observed in recognition and classification tasks when compared to their well-known counterparts such as rectified linear or maxout. In this paper, we introduce a simple, new type of activation function for multilayer feed-forward architectures. Unlike other approaches where new activation functions have been designed by discarding many of the mainstays of traditional activation function design, our proposed function relies on them and therefore shares most of the properties found in traditional activation functions. Nevertheless, our activation function differs from traditional activation functions on two major points: its asymptote and global extremum. Defining a function which enjoys the property of having a global maximum and minimum, turned out to be critical during our design-process since we believe it is one of the main reasons behind the gap observed in performance between traditional activation functions and their recently introduced counterparts. We evaluate the effectiveness of the proposed activation function on four commonly used datasets, namely, MNIST, CIFAR-10, CIFAR-100, and the Pang and Lee's movie review. Experimental results demonstrate that the proposed function can effectively be applied across various datasets where our accuracy, given the same network topology, is competitive with the state-of-the-art. In particular, the proposed activation function outperforms the state-of-the-art methods on the MNIST dataset.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据