4.7 Article

Connexin30 and Connexin43 show a time-of-day dependent expression in the mouse suprachiasmatic nucleus and modulate rhythmic locomotor activity in the context of chronodisruption

期刊

CELL COMMUNICATION AND SIGNALING
卷 17, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12964-019-0370-2

关键词

Circadian rhythm; SCN; Jet lag; Constant darkness; Constant light; cFOS; Entrainment

向作者/读者索取更多资源

BackgroundThe astroglial connexins Cx30 and Cx43 contribute to many important CNS functions including cognitive behaviour, motoric capacity and regulation of the sleep-wake cycle. The sleep wake cycle, is controlled by the circadian system. The central circadian rhythm generator resides in the suprachiasmatic nucleus (SCN). SCN neurons are tightly coupled in order to generate a coherent circadian rhythm. The SCN receives excitatory glutamatergic input from the retina which mediates entrainment of the circadian system to the environmental light-dark cycle. Connexins play an important role in electric coupling of SCN neurons and astrocytic-neuronal signalling that regulates rhythmic SCN neuronal activity. However, little is known about the regulation of Cx30 and Cx43 expression in the SCN, and the role of these connexins in light entrainment of the circadian system and in circadian rhythm generation.MethodsWe analysed time-of-day dependent as well as circadian expression of Cx30 and Cx43 mRNA and protein in the mouse SCN by means of qPCR and immunohistochemistry. Moreover, we analysed rhythmic spontaneous locomotor activity in mice with a targeted deletion of Cx30 and astrocyte specific deletion of Cx43 (DKO) in different light regimes by means of on-cage infrared detectors.ResultsFluctuation of Cx30 protein expression is strongly dependent on the light-dark cycle whereas fluctuation of Cx43 protein expression persisted in constant darkness. DKO mice entrained to the light-dark cycle. However, re-entrainment after a phase delay was slightly impaired in DKO mice. Surprisingly, DKO mice were more resilient to chronodisruption.ConclusionCircadian fluctuation of Cx30 and Cx43 protein expression in the SCN is differently regulated. Cx30 and astroglial Cx43 play a role in rhythm stability and re-entrainment under challenging conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据