4.3 Review

TRPM2 in Cancer

期刊

CELL CALCIUM
卷 80, 期 -, 页码 8-17

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2019.03.002

关键词

TRPM2; HIF-1 alpha; CREB; ROS; Mitochondria; Cancer

资金

  1. National Institutes of Health [R01-GM117014]
  2. Hyundai Hope on Wheels Scholar Grant
  3. Four Diamonds Fund of the Pennsylvania State University

向作者/读者索取更多资源

The TRP ion channel TRPM2 has an essential function in cell survival and protects the viability of a number of cell types after oxidative stress. It is highly expressed in many cancers including breast, prostate, and pancreatic cancer, melanoma, leukemia, and neuroblastoma, suggesting it promotes cancer cell survival. TRPM2 is activated by production of ADP-ribose (ADPR) following oxidative stress, which binds to the C-terminus of TRPM2, resulting in channel opening. In a number of cancers including neuroblastoma, TRPM2 has been shown to preserve viability and mechanisms have been identified. Activation of TRPM2 results in expression of transcription factors and kinases important in cell proliferation and survival including HIF-1/2 alpha, CREB, nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2), and Pyk2, and Src phosphorylation. Together, HIF-1/2 alpha and CREB regulate expression of genes encoding proteins with roles in mitochondrial function including members of the electron transport complex involved in ATP production. These contribute to lower mitochondrial ROS production while expression of antioxidants regulated by HIF-1/2 alpha, FOXO3a, CREB, and Nrf2 is maintained. CREB is also important in control of expression of key proteins involved in autophagy. When TRPM2-mediated calcium influx is inhibited, mitochondria are dysfunctional, cellular bioenergetics are reduced, production of ROS is increased, and autophagy and DNA repair are impaired, decreasing tumor growth and increasing chemotherapy sensitivity. Inhibition of TRPM2 expression or function results in decreased tumor proliferation and/or viability in many malignancies including breast, gastric, pancreatic, prostate, head and neck cancers, melanoma, neuroblastoma, and T-cell and acute myelogenous leukemia. However, in a small number of malignancies, activation of TRPM2 rather than inhibition has been reported to reduce tumor cell survival. Here, TRPM2-mediated Ca2+ signaling and mechanisms of regulation of cancer cell growth and survival are reviewed and controversies discussed. Evidence suggests that targeting TRPM2 may be a novel therapeutic approach in many cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据