4.5 Article

Porewater chemistry in compacted bentonite: Application to the engineered buffer barrier at the Olkiluoto site

期刊

APPLIED GEOCHEMISTRY
卷 74, 期 -, 页码 165-175

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.apgeochem.2016.09.010

关键词

Bentonite; Porewater chemistry; Modelling; Engineered barrier system; Nuclear waste repository

资金

  1. Posiva Oy

向作者/读者索取更多资源

Compacted bentonite is used as sealing and buffer material in engineered barrier systems (EBS) of high-level radioactive waste repositories. The chemical characteristics of this clay and its porewater affect the migration of radionuclides eventually released from the waste. They also determine the integrity and long-term performance of the clay barriers. Key features are the structural negative charge and the large proportion of structural (interlayer) water of the main mineral montmorillonite, which leads to exclusion of anions and a surplus of cations in a large part of the porosity space. The objective of this contribution was to assess the impact of different porosity model concepts on porewater chemistry in compacted bentonite in the context of the planned Finnish spent nuclear fuel repository at Olkiluoto. First, a structural model based on well-established crystallographic and electrostatic considerations was set up to estimate the fractions of the different porosity types. In view of the uncertainty related to the chemical properties of the interlayer water, two very different model concepts (anion-free interlayer, Donnan space), together with a well-established thermodynamic model for bentonite, were applied to derive the porewater composition of the bentonite buffer at Olkiluoto. The simulations indicate very similar results in the free water composition for the two models and thus support the validity of the reference porewater concept commonly used in performance assessment of waste repositories. Differences between the models are evident in the composition of the water affected by the surface charge (i.e. diffuse double layer and interlayer). These reflect the conceptual uncertainty in current multi-porosity diffusion models. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据