4.4 Article

Graphene functionalized decellularized scaffold promotes skin cell proliferation

期刊

CANADIAN JOURNAL OF CHEMICAL ENGINEERING
卷 98, 期 1, 页码 62-68

出版社

WILEY
DOI: 10.1002/cjce.23588

关键词

decellularized tissues; biomimetic scaffolds; graphene oxide; skin tissue engineering

向作者/读者索取更多资源

An increasing number of new strategies for skin tissue engineering have been developed with the potential to mimic the biological properties of native tissue with a high degree of complexity, flexibility, and reproducibility. In this study, decellularized tissue (DT) was prepared from the bovine heart by using chemical treatments. However, the mechanical properties of the DT constructs were poorer than the extra cellular matrix of the skin tissue. To overcome this challenge, hybrid scaffolds of DT and graphene oxide (GO) were developed and the effects of the GO concentration on the morphology, pore size, porosity, mechanical strength, and water uptake capacity of the samples were evaluated. Moreover, the biocompatibility of hybrid scaffolds was studied by Live/Dead staining. The results show that a hybrid scaffold incorporating 3 % graphene oxide improved the mechanical strength and cell viability by 25 % in comparison to the DT scaffolds. Cell viability results confirmed that the porous scaffolds could support cell adhesion, proliferation, and cell activity for 7 days. This study provides new insight into and opportunities for using graphene-based materials to develop biomimetic constructs for clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据