4.6 Article

Reversible neuroinhibition by focused ultrasound is mediated by a thermal mechanism

期刊

BRAIN STIMULATION
卷 12, 期 6, 页码 1439-1447

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.brs.2019.07.015

关键词

Transcranial focused ultrasound; Low intensity; Noninvasive; FUS; Somatosensory evoked potentials; Neuromodulation

资金

  1. United States National Institutes of Health National Institute of Neurological Disorders and Stroke (NINDS) [R01 NS098781]
  2. University of Minnesota MNDrive Neuromodulation

向作者/读者索取更多资源

Background: Transcranial focused ultrasound (tFUS) at low intensities has been reported to directly evoke responses and reversibly inhibit function in the central nervous system. While some doubt has been cast on the ability of ultrasound to directly evoke neuronal responses, spatially-restricted transcranial ultrasound has demonstrated consistent, inhibitory effects, but the underlying mechanism of reversible suppression in the central nervous system is not well understood. Objective/hypothesis: In this study, we sought to characterize the effect of transcranial, low-intensity, focused ultrasound on the thalamus during somatosensory evoked potentials (SSEP) and investigate the mechanism by modulating the parameters of ultrasound. Methods: TFUS was applied to the ventral posterolateral nucleus of the thalamus of a rodent while electrically stimulating the tibial nerve to induce an SSEP. Thermal changes were also induced through an optical fiber that was image-guided to the same target. Results: Focused ultrasound reversibly suppressed SSEPs in a spatially and intensity-dependent manner while remaining independent of duty cycle, peak pressure, or modulation frequency. Suppression was highly correlated and temporally consistent with in vivo temperature changes while producing no pathological changes on histology. Furthermore, stereotactically-guided delivery of thermal energy through an optical fiber produced similar thermal effects and suppression. Conclusion: We confirm that tFUS predominantly causes neuroinhibition and conclude that the most primary biophysical mechanism is the thermal effect of focused ultrasound. (C) 2019 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据