4.6 Article

HIV drug resistance prediction with weighted categorical kernel functions

期刊

BMC BIOINFORMATICS
卷 20, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12859-019-2991-2

关键词

HIV; Drug resistance prediction; Categorical kernel; Weighted kernel; PI; NRTI; NNRTI; INI; Machine learning; Support vector machine; Random Forest; Kernel PCA

资金

  1. Ministry of Economy and Competitiveness, Spain [AGL2016-78709-R]
  2. FI-AGAUR PhD studentship grant (Generalitat de Catalunya)
  3. Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in RD 2016-2019 [SEV-2015-0533]
  4. EU [BFU2016-77236-P]

向作者/读者索取更多资源

BackgroundAntiretroviral drugs are a very effective therapy against HIV infection. However, the high mutation rate of HIV permits the emergence of variants that can be resistant to the drug treatment. Predicting drug resistance to previously unobserved variants is therefore very important for an optimum medical treatment. In this paper, we propose the use of weighted categorical kernel functions to predict drug resistance from virus sequence data. These kernel functions are very simple to implement and are able to take into account HIV data particularities, such as allele mixtures, and to weigh the different importance of each protein residue, as it is known that not all positions contribute equally to the resistance.ResultsWe analyzed 21 drugs of four classes: protease inhibitors (PI), integrase inhibitors (INI), nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI). We compared two categorical kernel functions, Overlap and Jaccard, against two well-known noncategorical kernel functions (Linear and RBF) and Random Forest (RF). Weighted versions of these kernels were also considered, where the weights were obtained from the RF decrease in node impurity. The Jaccard kernel was the best method, either in its weighted or unweighted form, for 20 out of the 21 drugs.ConclusionsResults show that kernels that take into account both the categorical nature of the data and the presence of mixtures consistently result in the best prediction model. The advantage of including weights depended on the protein targeted by the drug. In the case of reverse transcriptase, weights based in the relative importance of each position clearly increased the prediction performance, while the improvement in the protease was much smaller. This seems to be related to the distribution of weights, as measured by the Gini index. All methods described, together with documentation and examples, are freely available at https://bitbucket.org/elies_ramon/catkern.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据