4.6 Article

Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks

期刊

BMC BIOINFORMATICS
卷 20, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12859-019-2939-6

关键词

CRISPR; Guide RNAs design; Deep learning

资金

  1. National Natural Science Foundation of China [21803045]
  2. National Institutes of Health [1U01CA166886]

向作者/读者索取更多资源

BackgroundCRISPR-Cpf1 has recently been reported as another RNA-guided endonuclease of class 2 CRISPR-Cas system, which expands the molecular biology toolkit for genome editing. However, most of the online tools and applications to date have been developed primarily for the Cas9. There are a limited number of tools available for the Cpf1.ResultsWe present DeepCpf1, a deep convolution neural networks (CNN) approach to predict Cpf1 guide RNAs on-target activity and off-target effects using their matched and mismatched DNA sequences. Trained on published data sets, DeepCpf1 is superior to other machine learning algorithms and reliably predicts the most efficient and less off-target effects guide RNAs for a given gene. Combined with a permutation importance analysis, the key features of guide RNA sequences are identified, which determine the activity and specificity of genome editing.ConclusionsDeepCpf1 can significantly improve the accuracy of Cpf1-based genome editing and facilitates the generation of optimized guide RNAs libraries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据