4.8 Article

Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime

期刊

APPLIED ENERGY
卷 172, 期 -, 页码 398-407

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2016.03.119

关键词

Lithium-ion; Aging modeling; Vehicle-to-grid; Electric vehicle

向作者/读者索取更多资源

In this paper an empirical capacity fade model for Li-ion batteries has been developed, calibrated and validated for a NCA/C and a LFP/C Li-ion cell. Based on extensive experimental work, this original, generic model is well suited for system simulation approaches, and is able to describe both cycle and calendar effects on aging. The stress factors taken into account for each aging mode are the state of charge and the temperature for calendar aging, and the temperature and the current for cycle aging. A simple approach has been adopted in order to instantaneously apply either cycle aging or calendar aging according to operating conditions and thus accurately model aging effects due to dynamic operating conditions. This model has then been coupled to an electrothermal model and integrated in a system simulation software application in order to assess the effect of charging rates, charging strategies and V2G on battery lifetime. When compared, the two battery chemistries exhibited different behaviors when submitted to V2G scenarios. Light V2G scenarios caused relatively low aging for the LFP/C based battery but tended to slightly increase the aging of the NCA/C based battery according to simulations. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据