4.8 Article

A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique

期刊

APPLIED ENERGY
卷 162, 期 -, 页码 1399-1409

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2014.12.021

关键词

Electric vehicles; Lithium-ion polymer battery; Uncertainty; Bias correction; Response surface approximate model; State-of-charge

资金

  1. National Natural Science Foundation of China [51276022]
  2. National Science & Technology Pillar Program [2013BAG05B00]
  3. Beijing Institute of Technology Research Fund Program for Young Scholars

向作者/读者索取更多资源

In order to maximize the capacity/energy utilization and guarantee safe and reliable operation of battery packs used in electric vehicles, an accurate cell state-of-charge (SoC) estimator is an essential part. This paper tries to add three contributions to the existing literature. (1) An integrated battery system identification method for model order determination and parameter identification is proposed. In addition to being able to identify the model parameters, it can also locate an optimal balance between model complexity and prediction precision. (2) A radial basis function (RBF) neural network based uncertainty quantification algorithm has been proposed for constructing response surface approximate model (RSAM) of model bias function. Based on the RSAM, the average pack model can be applied to every single cell in battery pack and realize accurate terminal voltage prediction. (3) A systematic SoC estimation framework for multi-cell series-connected battery pack of electric vehicles using bias correction technique has been proposed. Finally, three cases with twelve lithium-ion polymer battery (LiPB) cells series-connected battery pack are used to verify and evaluate the proposed framework. The result indicates that with the proposed systematic estimation framework the maximum absolute SoC estimation error of all cells in the battery pack are less than 2%. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据