4.5 Article

Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles

期刊

BIOPROCESS AND BIOSYSTEMS ENGINEERING
卷 42, 期 11, 页码 1769-1777

出版社

SPRINGER
DOI: 10.1007/s00449-019-02173-y

关键词

Millettia pinnata; Green chemistry method; Copper nanoparticles; Characterization; Pharmaceutical activities

资金

  1. KU-Research Professor Program of Konkuk University, Seoul, South Korea
  2. National Research Foundation of Korea [22A20153813519] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The phenomenal and astonishing properties and their different application in the field of pharmaceutical made copper nanoparticles (Cu-NPs) to be in the spotlight of the researcher's focus. In the present study, copper nanoparticles were biologically synthesized with the aqueous extract of the flower Millettia pinnata, and their corresponding characteristics were studied using UV-visible spectroscopy, XRD, FT-IR, SEM, TEM, and SAED analysis. Copper acetate was reduced to copper nanoparticles and is confirmed by UV-visible spectrophotometer analysis. The maximum absorption occurring at 384 nm at the visible spectrum of UV rays confirms the surface plasmon resonance of the nanoparticles. The result of the FTIR spectroscopy analysis of the nanoparticles complements the involvement of organic mioties of the flower extract in the synthesis. The synthesized particles were extremely durable, spherical with the average particle size in the range of 23 +/- 1.10 nm. The Cu-NPs exhibited greater inhibition on DPPH radical and nitric oxide scavenging activities. The biologically synthesized Cu-NPs was receptive to the Gram-negative and Gram-positive bacteria as well. The Cu-NPs exhibited strong anti-inflammatory activity using albumin denaturation and membrane stabilization. The present study is the first effort done to synthesize of Cu-NPs from the extract of M. pinnata flower. Consequently, to authenticate the results and to establish the antioxidant, antibacterial, an anti-diabetic and anti-inflammatory agent, in vivo studies are made in the molecular level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据