4.8 Article

Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa

期刊

APPLIED ENERGY
卷 184, 期 -, 页码 873-881

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2016.07.061

关键词

Carbon neutrality; Greenhouse gas emission; Wastewater treatment plant; Energy efficiency; Energy harvesting

资金

  1. Science and Technology Commission of Shanghai Municipality [15230724300]
  2. 111 Project
  3. Fundamental Research Funds for the Central Universities
  4. survey of WWTPs in China and Africa

向作者/读者索取更多资源

Currently almost all wastewater treatment plants (WWTPs) require a large amount of energy input to process the influent, mostly as electricity, and the associated carbon emissions are in aggregate significant. In order to achieve carbon neutrality, it is important to understand direct and indirect carbon emissions generated by WWTPs. Here, we focused on electricity use in WWTPs as it is a major source of carbon emissions. Specifically, we compared the electricity intensity and associated carbon emissions of WWTPs in four countries: the USA, Germany, China, and South Africa. We found that 100% energy self-sufficient WWTPs are feasible by a combination of increased energy efficiency and energy harvesting from the wastewater. Carbon emissions of WWTPs depend strongly on the electricity fuel mix, wastewater treatment technologies, treatment capacity, and influent and effluent water quality. A few WWTPs operating in developed countries (USA and Germany) have already achieved almost 100% (or higher) electricity self-sufficiency through energy efficiency and harvesting biogas and electricity. In comparison with Germany, WWTPs in the USA are more heterogeneous and the range of unit carbon emission intensity is much wider. In some areas where the organic content in wastewater is lower and less biogas is produced, it is still possible to achieve energy self-sufficiency by using thermal energy from wastewater. Industrial wastewater in China in general consumes more electricity and the carbon intensity of electricity is also higher, resulting in much higher unit carbon emissions as compared with other countries. In megacities such as Shanghai, larger capacity of centralized WWTPs can decrease the unit carbon emissions significantly. These findings provide a global perspective on the state of WWTPs and are helpful to improve the understanding, designing and operating of WWTPs from the perspective of achieving carbon neutrality. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据