4.7 Article Proceedings Paper

Controlling large Boolean networks with single-step perturbations

期刊

BIOINFORMATICS
卷 35, 期 14, 页码 I558-I567

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btz371

关键词

-

资金

  1. University of Luxembourg
  2. ANR-FNR project AlgoReCell [INTER/ANR/15/11191283]
  3. Luxembourg National Research Fund

向作者/读者索取更多资源

Motivation The control of Boolean networks has traditionally focussed on strategies where the perturbations are applied to the nodes of the network for an extended period of time. In this work, we study if and how a Boolean network can be controlled by perturbing a minimal set of nodes for a single-step and letting the system evolve afterwards according to its original dynamics. More precisely, given a Boolean network (BN), we compute a minimal subset Cmin of the nodes such that BN can be driven from any initial state in an attractor to another desired' attractor by perturbing some or all of the nodes of Cmin for a single-step. Such kind of control is attractive for biological systems because they are less time consuming than the traditional strategies for control while also being financially more viable. However, due to the phenomenon of state-space explosion, computing such a minimal subset is computationally inefficient and an approach that deals with the entire network in one-go, does not scale well for large networks. Results We develop a divide-and-conquer' approach by decomposing the network into smaller partitions, computing the minimal control on the projection of the attractors to these partitions and then composing the results to obtain Cmin for the whole network. We implement our method and test it on various real-life biological networks to demonstrate its applicability and efficiency. Supplementary information Supplementary data are available at Bioinformatics online.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据