4.7 Article

circDeep: deep learning approach for circular RNA classification from other long non-coding RNA

期刊

BIOINFORMATICS
卷 36, 期 1, 页码 73-80

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btz537

关键词

-

资金

  1. KBRIN Investigator Development Award (IDeA) from the NIH National Institute of General Medical Sciences [P20GM103436]
  2. NIH NIGMS AREA grant [R15GM126446]

向作者/读者索取更多资源

Motivation Over the past two decades, a circular form of RNA (circular RNA), produced through alternative splicing, has become the focus of scientific studies due to its major role as a microRNA (miRNA) activity modulator and its association with various diseases including cancer. Therefore, the detection of circular RNAs is vital to understanding their biogenesis and purpose. Prediction of circular RNA can be achieved in three steps: distinguishing non-coding RNAs from protein coding gene transcripts, separating short and long non-coding RNAs and predicting circular RNAs from other long non-coding RNAs (lncRNAs). However, the available tools are less than 80 percent accurate for distinguishing circular RNAs from other lncRNAs due to difficulty of classification. Therefore, the availability of a more accurate and fast machine learning method for the identification of circular RNAs, which considers the specific features of circular RNA, is essential to the development of systematic annotation. Results Here we present an End-to-End deep learning framework, circDeep, to classify circular RNA from other lncRNA. circDeep fuses an RCM descriptor, ACNN-BLSTM sequence descriptor and a conservation descriptor into high level abstraction descriptors, where the shared representations across different modalities are integrated. The experiments show that circDeep is not only faster than existing tools but also performs at an unprecedented level of accuracy by achieving a 12 percent increase in accuracy over the other tools. Availability and implementation https://github.com/UofLBioinformatics/circDeep. Supplementary information Supplementary data are available at Bioinformatics online.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据