4.7 Article

Multiply Modified Repeating DNA Templates for Production of Novel DNA-Based Nanomaterial

期刊

BIOCONJUGATE CHEMISTRY
卷 0.3, 期 8, 页码 2201-2208

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.bioconjchem.9b00433

关键词

-

资金

  1. Israel Science Foundation (ISF) [1589/14]

向作者/读者索取更多资源

Here, we report synthesis of long (thousands of base pairs), uniform double-stranded (ds) DNA comprising short (6-15 base pairs) tandem repeats. The synthesis method is based on self-assembly of short (6-15 bases) half-complementary 5'-end phosphorylated single-stranded oligonucleotides into long ds polymer molecules and covalent association of the oligonucleotide fragments in the polymer by DNA ligase to yield complete non-nicked ds DNA. The method is very flexible in regard to the sequence of the oligonucleotides and their length. Human telomeric DNA comprising thousands of base pairs as well as methylated, mismatched, and fluorescent dye-modified uniform dsDNA molecules can be synthesized. We have demonstrated by high resolution frequency-modulation atomic force microscopy that the structure of DNA containing mismatches is strongly different from that of the non-mismatched one. The DNA molecules comprising groups capable of anchoring metal particles and other redox active elements along the whole length of the nucleic acid polymer should find use as wires or transistors in future nanoelectronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据