4.6 Article

A novel joint HCPMMP method for automatically classifying Alzheimer's and different stage MCI patients

期刊

BEHAVIOURAL BRAIN RESEARCH
卷 365, 期 -, 页码 210-221

出版社

ELSEVIER
DOI: 10.1016/j.bbr.2019.03.004

关键词

Alzheimer's disease (AD); Healthy control (HC); Human connectome project (HCP); Machine learning; Mild cognitive impairment (MCI); Multi-modal parcellation (MMP); Network-based analysis

资金

  1. National Natural Science Foundation of China [61871168]
  2. Alzheimer's Disease Neuroimaging Initiative (ADNI) National Institutes of Health, USA [U01 AG024904]
  3. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  4. National Institute on Aging
  5. National Institute of Biomedical Imaging and Bioengineering
  6. Alzheimer's Association

向作者/读者索取更多资源

A 360-area surface-based cortical parcellation was recently generated using multimodal data in a group average of 210 healthy young adults from the Human Connectome Project (HCP). In order to automatically and accurately identify mild cognitive impairment (MCI) at its two levels (early MCI and late MCI), Alzheimer's disease (AD) and healthy control (HC), a novel joint HCP MMP method was first proposed to delineate the cortical architecture and function connectivity in a group of non healthy adults. The proposed method was applied to register a dataset of 96 resting-state functional connectomes from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to Connectivity Informatics Technology Initiative (CIFTI) space and parcellated brain into human connectome project multi-modal parcellation (HCPMMP) with 360 areas. Various network features in each node of the connectivity network were considered as the candidate features for classification.The fine-grained multi-modal based on HCP-MMP combined with machine learning in identification for EMCI, LMCI, AD and HC. Applying various network features, including strength, betweenness centrality, clustering coefficient, local efficiency, eigenvector centrality, etc, we trained and tested several machine learning models. Thousands of features were processed by filter and wrapper feature selection procedures, and finally there were thirty features to be selected to achieve classification accuracies of 93.8% for EMCI vs. HC, 95.8% for LMCI vs. HC, 95.8% for AD vs. HC, and 91.7% for LMCI vs. AD, respectively by using support vector machine (SVM) algorithm. Most of the selected features locate in the region of temporal or cingulate cortex. Compared with previous studies, our results demonstrate the superiority of the proposed method over existing techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据