4.7 Article

Topology-optimized design, construction and experimental evaluation of concrete beams

期刊

AUTOMATION IN CONSTRUCTION
卷 102, 期 -, 页码 59-67

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.autcon.2019.02.001

关键词

Topology optimization; Compliance; Stress constraints; Drucker-Prager; Concrete design; Experimental investigation

向作者/读者索取更多资源

This work presents topology-optimized design of plain concrete beams using a density-based approach and subsequent construction and experimental evaluation. Three elastic design cases are considered to allow investigation of the effect of using different topology optimization problem formulations and different safety factors on the material strengths. Specifically (i) the compliance is minimized under a limit on the material use, and (ii) stress limits are imposed with a Drucker-Prager criteria while the material use is minimized. Imposing stress limits on the design problem considered in this work is found to create solutions that require significant levels of post-processing prior to construction. This heuristic post-processing is demonstrated to have had a significant effect on the behavior of one of the design cases; leading to large variations in the experimental observations. In line with common design engineering practices, the most robust experimental behavior is found in the design with the highest safety factor on the concrete's tensile strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据