4.8 Article

Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine

期刊

BIOMATERIALS
卷 39, 期 -, 页码 105-113

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2014.10.059

关键词

Layer-by-layer; Nanoparticles; Oral drug delivery; Casein; Magnetic resonance

资金

  1. NIH [R01CA154846-02]
  2. NCI's Cancer Nanotechnology Platform Project (CNPP) [U01CA151810-02]
  3. Center for Pediatric Nanomedicine of Children's Healthcare of Atlanta
  4. NATIONAL CANCER INSTITUTE [U01CA151810, R01CA154846] Funding Source: NIH RePORTER

向作者/读者索取更多资源

We report a novel drug delivery system composed of layer-by-layer (LBL) milk protein casein (CN) coated iron oxide nanoparticles. Doxorubicin (DOX) and indocyanine green (ICG) were selected as model drug molecules, which were incorporated into the inner polymeric layer, and subsequently coated with casein. The resulting casein coated iron oxide nanoparticles (CN-DOX/ICG-IO) were stable in the acidic gastric condition with the presence of gastric protease. On the other hand, the loaded drugs were released when the casein outer layer was gradually degraded by the intestinal protease in the simulated intestine condition. Such unique properties enable maintenance of the bioactivity of the drugs and thus enhance the drug delivery efficiency. Ex vivo experiments showed that the LBL CN-DOX-IO improved the translocation of DOX across microvilli and its absorption in the small intestine sacs. In vivo imaging of mice that were orally administered with these LBL CN-ICG-IO nanostructures further confirmed that the reported drug delivery vehicles could pass the stomach without significant degradation, and then accumulated in the small intestine. In addition, the magnetic iron oxide nanoparticle core offered an MRI contrast enhancing capability for in vivo imaging guided drug delivery. Therefore, the reported LBL CN-DOX/ICG-IO is a promising oral drug delivery nanoplatform, especially for drugs that are poorly soluble in water or degradable in the gastric environment. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据