4.4 Article

Position-based impedance force controller with sensorless force estimation

期刊

ASSEMBLY AUTOMATION
卷 39, 期 3, 页码 489-496

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/AA-09-2018-0124

关键词

Hybrid control; Force tracking; Position-based impedance control; Sensorless force estimation; Surface prediction

向作者/读者索取更多资源

Purpose This paper aims to purpose an improved sensorless position-based force controller in gravitational direction for applications including polishing, milling and deburring. Design/methodology/approach The first issue is the external force/torque estimation at end-effector. By using motor's current information and Moore-Penrose generalized inverse matrix, it can be derived from the external torques of every joints for nonsingular cases. The second issue is the force control strategy which is based on position-based impedance control model. Two novel improvements were made to achieve a better performance. One is combination of impedance control and explicit force control. The other one is the real-time prediction of the surface's shape allowing the controller adaptive to arbitrary surfaces. Findings The result of validation experiments indicates that the estimation of external force and prediction of surface's shape are credible, and the position-based constant contact force controller in gravitational direction is functional. The accuracy of force tracking is adequate for targeted applications such as polishing, deburring and milling. Originality/value The value of this paper lies in three aspects which are sensorless external force estimation, the combination of impedance control and explicit force control and the independence of surface shape information achieved by real-time surface prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据