4.8 Article

UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma

期刊

BIOMATERIALS
卷 36, 期 -, 页码 98-109

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2014.09.008

关键词

Multi-targeting therapy; Brain glioma; Nanoparticles; uPA; Cell-penetrating peptide

资金

  1. National Basic Research Program of China (973 Program) [2013CB932502]
  2. State Scholarship Fund, National Natural Science Foundation of China [81472757, 81302714]
  3. Zhuoxue program of Fudan University

向作者/读者索取更多资源

Now it is well evidenced that tumor growth is a comprehensive result of multiple pathways, and glioma parenchyma cells and stroma cells are closely associated and mutually compensatory. Therefore, drug delivery strategies targeting both of them simultaneously might obtain more promising therapeutic benefits. In the present study, we developed a multi-targeting drug delivery system modified with uPA-activated cell-penetrating peptide (ACPP) for the treatment of brain glioma (ANP). In vitro experiments demonstrated nanoparticles (NP) decorated with cell-penetrating peptide (CPP) or ACPP could significantly improve nanoparticles uptake by C6 glioma cells and nanoparticles penetration into glioma spheroids as compared with traditional NP and thus enhanced the therapeutic effects of its payload when paclitaxel (PTX) was loaded. In vivo imaging experiment revealed that ANP accumulated more specifically in brain glioma site than NP decorated with or without CPP. Brain slides further showed that ACPP contributed to more nanoparticles accumulation in glioma site, and ANP could co-localize not only with glioma parenchyma cells, but also with stroma cells including neo-vascular cells and tumor-associated macrophages. The pharmacodynamics results demonstrated ACPP could significantly improve the therapeutic benefits of nanoparticles by significantly prolonging the survival time of glioma-bearing mice. In conclusion, the results suggested that nanoparticles modified with uPA-sensitive ACPP could reach multiple types of cells in glioma tissues and provide a novel strategy for glioma targeted therapy. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据