4.4 Article

Nitric oxide production is downregulated during respiratory syncytial virus persistence by constitutive expression of arginase 1

期刊

ARCHIVES OF VIROLOGY
卷 164, 期 9, 页码 2231-2241

出版社

SPRINGER WIEN
DOI: 10.1007/s00705-019-04259-0

关键词

-

类别

资金

  1. Consejo Nacional de Ciencia y Tecnologia, Mexico [179838]
  2. Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico [PAPIIT IN218916]
  3. School of Medicine, UNAM

向作者/读者索取更多资源

Viral persistence alters cellular antiviral activities. Nitric oxide (NO), a highly reactive free radical and a potent antiviral molecule, can inhibit replication of RNA and DNA viruses, but its production and effect during viral persistence are largely unknown. NO synthesis is stimulated in epithelial cells during acute infection with respiratory syncytial virus (RSV) and interferes with viral replication. In this study, we compared the levels of production of NO and expression of its regulatory enzymes, inducible nitric oxide synthase (NOS II) and arginase 1 (Arg-1), during acute and persistent RSV infection in a macrophage cell line to investigate their role in the control and maintenance of viral infection. We observed that NO and NOS II mRNA were induced at higher levels in acutely infected macrophages than in persistently infected macrophages, while the kinetics of NOS II protein expression were similar in both types of infected cultures, except that its disappearance was delayed during acute infection. Thus, NOS II was inducible and expressed at high levels during persistent infection, but production of NO was low relative to acute infection. This was not associated with a lack of enzymatic activity but instead was due to constitutive expression of the Arg-1 enzyme at the mRNA and protein levels, suggesting that arginase restricts availability of L-arginine as a substrate for NOS II to synthesize NO. This hypothesis was supported by showing that arginase enzymatic activity was inhibited in persistently RSV-infected cells by N omega-hydroxy-nor-L-arginine, increasing L-arginine availability in conditioned medium and producing increased levels of nitrites, concurrently with a significant reduction in virus genome replication, implying that Arg-1 overexpression contributes to the maintenance of the RSV genome in the host in persistent infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据