4.7 Article

Competitive adsorption of SF6 decompositions on Ni-doped ZnO (100) surface: Computational and experimental study

期刊

APPLIED SURFACE SCIENCE
卷 479, 期 -, 页码 185-197

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2019.01.255

关键词

SF6 decompositions; Ni dopant; ZnO (100) surface; First principles; Gas sensing

资金

  1. National Natural Science Foundation of China [51507144]
  2. China Postdoctoral Science Foundation [2015M580771, 2016T90832]
  3. Chongqing Science and Technology Commission (CSTC) [cstc2016jcyjA0400]
  4. Postdoctoral Science Funded Project of Chongqing [Xm2015016]

向作者/读者索取更多资源

In this paper, the adsorption models of three SF6 decomposition gas (SO2, SOF2, SO2F2) on the Ni-doped ZnO (100) surface were established based on density functional theory (DFT). The structural and electronic properties of intrinsic and Ni-doped ZnO (100) surface after gas adsorption were analyzed to clarify the adsorption capacity and sensing mechanism. In addition, the adsorption parameters of Ni-doped ZnO (100) surface and intrinsic ZnO (100) surface were compared. The results show that Ni-doped ZnO (100) surface has a strong chemical adsorption effect on SO2 and SO2F2, while exhibits weaker physical adsorption to SOF2. Compared with intrinsic ZnO (100) surface, the adsorption capacity of three gas molecules were obviously enhanced after Ni doping, implying Ni dopant can significantly improve the sensitivity and selectivity of ZnO materials to SO2, SOF2, SO2F2 gases. Meanwhile, gas sensing experiment of intrinsic and Ni-doped ZnO materials towards SO2, SOF2, and SO2F2 was carried out. All results lay a solid foundation for exploring high-performance ZnO based sensors to detect SF6 decomposition components for GIS partial discharge defect diagnose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据