4.7 Article

Solvent-exfoliation of transition-metal dichalcogenide MoS2 to provide more active sites for enhancing photocatalytic performance of BiOIO3/g-C3N4 photocatalyst

期刊

APPLIED SURFACE SCIENCE
卷 481, 期 -, 页码 838-851

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.03.177

关键词

Photocatalytic; Oxidation; Solvent-exfoliation; Heterostructure; Field-effect

资金

  1. National Natural Science Foundation of China [21237003, 50806041, 51106133, 51606115]
  2. Natural Science Foundation of Shanghai [18ZR1416200, 16ZR1413500]
  3. Shanghai Huangpu Foundation [HKM201833]

向作者/读者索取更多资源

The ternary complex photocatalysts of BiOIO3/g-C3N4/MoS2 by solvent-exfoliation method was synthesized for the first time. In the typical procedure, the BiOIO3/g-C3N4 was obtained via hydrothermal synthesis technique, and then the BiOIO3/g-C3N4/MoS2 photocatalysts were prepared via ultrasonic solvent-exfoliation method from bulk commercial MoS 2 in the alcohol solution. The samples of BiOIO3/g-C3N4/MoS2 were analyzed by PL, XRD and other characterization analysis methods. The photocatalytic activity of the as-prepared samples was investigated by removing gas phase mercury irradiation under visible light. The as-prepared BCM-0.3 exhibits excellent photocatalytic performance, being with the highest efficiency of 70.58%. Owing to the electronic channels of field-effect, an internal electric field was formed through the corresponding band-gap engineering, improving photocatalytic reaction. Besides, the excellent activity of the ternary photocatalysts BiOIO3/g-C3N4/MoS2 is attributed to heterostructure between BiOIO3/g-C3N4 and MoS2, which enlarges spectral response and improved separation efficiency of charge carriers, and MoS2-composing, which provides more active sites for catalytic oxidation. In addition, the as-prepared samples with excellent photocatalytic performance also offer a perspective insight into the hydrogen evolution, CO2 conversion and degradation of organic pollutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据