4.7 Article

Electric field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nickel (Ni) membrane with high-efficient performance for dye wastewater treatment

期刊

APPLIED SURFACE SCIENCE
卷 483, 期 -, 页码 1006-1016

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.04.054

关键词

Dye waste water; PVDF-GO-Ni membrane; Antifouling; XDLVO theory

资金

  1. National Natural Science Foundation of China [21506195, 51578509]
  2. National Natural Science Foundation of Zhejiang Province [LGG19E030008, LQ17E080004]

向作者/读者索取更多资源

Due to potential toxicity of the dyes and their visibility even at the very low concentration, treatment of dye wastewater has been a matter of considerable interest. Membrane technology is an emerging technology that offers a promising way to remove dyes from wastewater. However, the membrane fouling and trade-off effect severely hinder the removal efficiency. In view of this, the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nickel (Ni) composite membrane was firstly developed and implanted into the dead-end filtration cell as the cathode in the sandwich-like electrode. Under the assistance of electric field, the conductive PVDF-GO-Ni membrane displayed 98.02% Congo red (CR) rejection with the flux of 38.39 L.m(-2).h(-1).bar(-1), which was an encouraging result comparing to most previous reports. Moreover, PVDF-GO-Ni membrane possessed certain antibacterial ability and super anti-adhesion ability to CR molecules. The underlying mechanism of super antiadhesion of CR molecules was investigated by quantitatively calculating the interfacial interaction energy according to the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. XDLVO theory indicated that the repulsive acid-based (AB) interaction energy between CR molecules and membrane surface predominantly facilitated the super anti-adhesion ability of the hydrophilic PVDF-GO-Ni membrane. The present study not only supplied a novel PVDF-GO-Ni membrane for high-efficient treatment of dye waste water, but also built an approach to quantitatively calculate interfacial interaction energy which should have a wide applications in forecasting and directing the modifications of separation membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据