4.7 Article

Grain size and temperature effects on the indentation induced plastic deformations of nano polycrystalline diamond

期刊

APPLIED SURFACE SCIENCE
卷 480, 期 -, 页码 349-360

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2019.02.229

关键词

Grain size effect; Temperature effect; Indentation; Plastic deformation; Nano polycrystalline diamond

资金

  1. National Natural Science Foundation of China [51502217, 11504280, 11504087]

向作者/读者索取更多资源

Although nano polycrystalline diamond (NPD) is found with hardness equal to, or even higher than that of single crystal diamond, there are still some controversies about its mechanical responses as well as the plastic deformation mechanisms during the indenting processes. Through molecular dynamics simulations, we have investigated the effects of grain size and temperature on the indentations of NPD. Our results indicate that when the grain size is smaller than 10 nm, NPD would soften as the grain size decreases. For the studied grain sizes of 5, 7, and 10 nm, plastic deformations are resulted from the dislocation propagation mode and the atomic disordering mode. For NPD with the studied grain size of 2 nm, its plastic deformation is mainly determined by the atomic disordering of the diamond grains. Our simulations reveal that higher temperatures result in the softening of NPD, and the plastic deformation mechanisms at high temperatures are basically the same with that at 300 K. The results presented in this work not only provide an answer for the questions about the grain size and temperature effects on the mechanical responses of NPD, but also offer insights into plastic deformation mechanisms of NPD, which could provide reference data for the potential applications as well as the design of novel nano structured superhard materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据