4.8 Article

High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network

期刊

APPLIED ENERGY
卷 179, 期 -, 页码 1-6

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2016.04.070

关键词

Phase change material; Network structure; Latent heat storage; Thermal conductivity

资金

  1. Japan Science and Technology (JST) agency through the Strategic International Collaborative Research Program (SICORP)

向作者/读者索取更多资源

To enhance the thermal conductivity of phase change materials (PCM) such as sugar alcohol and molten salts, the preparation of a phase change composite (PCC) with a PCM and a filler with high thermal conductivity has been widely investigated. Although many reported PCCs have high thermal conductivity, the stability during thermal cycling endurance is often too low for practical use. This paper describes the development of a PCC with both high thermal conductivity and high cyclic durability. The PCCs were prepared by a hot -pressing method. Erythritol (melting point: 118 degrees C, thermal conductivity: 0.73 W m(-1) K-1) was used as a PCM, and carbon fiber (thermal conductivity: 900 W m(-1) K-1 in the fiber direction) and indium particles (thermal conductivity: 82.8 W m(-1) K-1) were used as the high thermal conductivity fillers. The effective thermal conductivity of the PCC was measured using the laser flash method and the network structures were analyzed using energy dispersive spectroscopy and scanning electron microscopy. Thermal cycling tests through the melting and solidification phases of the erythritol were performed to investigate the cyclic durability of the PCCs. We found that the indium particles melted during hot pressing, welding together the carbon fiber to produce a stable percolating network, which significantly enhanced the thermal conductivity and cyclic endurance of the PCCs. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据