4.6 Article

Subsurface damage and material removal of Al-Si bilayers under high-speed grinding using molecular dynamics (MD) simulation

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-019-2778-3

关键词

-

资金

  1. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [51621004]
  2. NNSFC [11772122, 51871092]
  3. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body [71865015]
  4. Fundamental Research Funds for the Central Universities [531107051151]
  5. National Key Research and Development Program of China [2016YFB0700300]

向作者/读者索取更多资源

By performing three-dimensional molecular dynamics (MD) simulations, the effects of the tool radius, depth of cut and grinding speed are thoroughly studied in terms of the workpiece deformation, material removal, dislocation movement, atomic trajectory, grinding temperature and average grinding force. The strength of ductile/brittle (Al/Si) bilayers is largely enhanced, because the interface can hinder the passage of dislocations. The interface in brittle/ductile (Si/Al) bilayers contributes to its ductility by increasing the movability of dislocations when gliding on it. The brittle to ductile transition of bilayers, which strongly depends on the interface debond energy, has a key role in controlling the dislocation slipping mechanism. The investigation also reveals that a larger tool radius, higher grinding speed or deeper depth of cut results in more chipping volume and higher grinding temperature in both bilayers. At the same machining parameters, the above changes in brittle/ductile (Si/Al) bilayers are more apparent than that in ductile/brittle (Al/Si) bilayers, since Si is stiffer and has a higher yield strength than Al.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据