4.8 Article

In-situ fabrication of atomic charge transferring path for constructing heterojunction photocatalysts with hierarchical structure

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 248, 期 -, 页码 459-465

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2019.02.050

关键词

Charge separation; Heterojunction; Photocatalysis; Hierarchical structure

资金

  1. National Natural Science Foundation of China [21573101]
  2. support plan for Distinguished Professor of Liaoning Province [[2015]153]
  3. Liaoning BaiQianWan Talents program [[2017]96]
  4. University innovation talent support plan of Liaoning Province [LR2017011]
  5. State Key Laboratory of Catalysis in DICP [N-15-10]
  6. Strategic Priority Research Program of Chinese Academy of Sciences [XDA21010207]
  7. Youth Innovation Promotion Association of Chinese Academy of Sciences
  8. R&D department of PetroChina

向作者/读者索取更多资源

The efficiencies of photocatalytic solar energy conversion systems are significantly limited by the challenging charge separation process, which can be improved via some commonly-used interfacial modulating strategies, e.g., introducing heterojunctions at the interfaces of different semiconductors. However, in many cases, the constructed heterojunctions not always work well mainly due to the serious mismatching of surface and energy structures between different components. In this study, inspired by the similarities in crystalline structures and elemental compositions, a novel heterojunction photocatalyst with hierarchical structure was first fabricated between bismuth-based semiconductors (Bi2Ti2O2 and gamma-Bi2O3) possessing identical cubic phase via a simple insitu transformation method. The resulted Bi2Ti2O7/gamma-Bi2O3 heterojunction photocatalyst (denoted as BT/gamma-Bi2O3) shows extremely high photocatalytic activities in photocatalytic removal of various high concentration environmental pollutants, e.g., phenol, dyes and sulfur containing compounds. An enhancement of more than two orders of magnitude in photocatalytic performances can be achieved for the BT/gamma-Bi2O3 photocatalyst than the single composite, which is possibly attributable to the co-sharing of Bi-O tetrahedra units for the composites in heterojunction structures to provide an atomic charge transferring pathway for facilitating the spatial charge separation. This work provides an effective strategy for rationally constructing charge separation and transfer pathway in semiconductor-based photocatalysts for solar energy conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据