4.8 Article

LTE: A procedure to predict power plants dynamic behaviour and components lifetime reduction during transient operation

期刊

APPLIED ENERGY
卷 162, 期 -, 页码 880-891

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.10.162

关键词

Combined cycle power plant; Dynamic model; Plant flexibility; Residual life

向作者/读者索取更多资源

The liberalization of the European energy markets combined with the rapid spread of unpredictable renewable energy sources have stressed the need of improving the traditional power units flexibility. Fast start-ups/shut downs and rapid load variations have become priority objectives because they guarantee high profits in the short term but cause a lifetime reduction due to thermo-mechanical fatigue, creep and corrosion. To this purpose, in the present work, an innovative procedure, able to predict the power plant dynamic behaviour during load variations, identify the most stressed components and estimate their lifetime reduction is presented and tested. Being combined cycles the most efficient, flexible and widespread technologies, the selected test case is a 380 MW combined cycle unit. To predict the plant dynamic performance a dynamic model has been built in Modelica language and several transient conditions investigated. The high pressure steam drum and superheater are the most stressed components. Results show a 52.9% reduction in superheater collectors life if the load variation is 50% faster than the reference case. On the contrary, a 35.8% lifetime increase is observed if the load variation is 50% slower. For the same conditions the high pressure steam drum life is reduced by 31.9% and increased by 16.3%, respectively. Also the superheater tube bank lifetime reduction is computed. The proposed procedure can be considered a valuable innovative tool to assist power plant designers and operators. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据