4.8 Article

The Kirkendall Effect for Engineering Oxygen Vacancy of Hollow Co3O4 Nanoparticles toward High-Performance Portable Zinc-Air Batteries

期刊

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
卷 58, 期 39, 页码 13840-13844

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.201908736

关键词

bifunctional catalyst; electrospinning; Kirkendall effect; oxygen vacancies; zinc-air batteries

资金

  1. Beijing Natural Science Foundation [JQ18005]
  2. National Key RAMP
  3. D Program of China [2016YFB0100201]
  4. National Natural Science Foundation of China [51671003]
  5. China Postdoctoral Science Foundation [8206300174]
  6. Young Thousand Talented Program, NUS Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program Seed Fund [R265000628133]
  7. Lloyd's Register Foundation, UK [R265000553597]

向作者/读者索取更多资源

Structure and defect control are widely accepted effective strategies to manipulate the activity and stability of catalysts. On a freestanding hierarchically porous carbon microstructure, the tuning of oxygen vacancy in the embedded hollow cobaltosic oxide (Co3O4) nanoparticles is demonstrated through the regulation of nanoscale Kirkendall effect. Starting with the embedded cobalt nanoparticles, the concentration of oxygen-vacancy defect can vary with the degree of Kirkendall oxidation, thus regulating the number of active sites and the catalytic performances. The optimized freestanding catalyst shows among the smallest reversible oxygen overpotential of 0.74 V for catalyzing oxygen reduction/evolution reactions in 0.1 m KOH. Moreover, the catalyst shows promise for substitution of noble metals to boost cathodic oxygen reactions in portable zinc-air batteries. This work provides a strategy to explore catalysts with controllable vacancy defects and desired nano-/microstructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据