4.8 Article

Shrapnel nanoparticles loading docetaxel inhibit metastasis and growth of breast cancer

期刊

BIOMATERIALS
卷 64, 期 -, 页码 10-20

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2015.06.017

关键词

Shrapnel; Nanoparticles; Breast cancer; Metastasis; Reduction-sensitive; Enzyme-sensitive

资金

  1. National Basic Research Program of China [2013CB932704, 2013CB932503]
  2. National Natural Science Foundation of China [81270047, 81373359]

向作者/读者索取更多资源

Metastasis is one of the major obstacles for the successful therapy of breast cancer. To inhibit the metastasis and growth of breast cancer simultaneously, a new docetaxel (DTX) loaded shrapnel nano delivery system with the reduction- and enzyme-sensitive properties was designed and developed. Firstly, methoxy polyethylene glycol-peptide-vitamin E succinate (PPV), a matrix metalloproteinases (MMPs)-sensitive copolymer, was synthesized by conjugating mPEG and vitamin E succinate (VES) using an enzyme-sensitive peptide. Then, DTX loaded methoxy polyethylene glycol-s-s-vitamin E succinate (PSV) micelles (DPM) @ PPV-based liposomes (DPM@PL) were prepared by the incorporation of DPM into the PPV-based liposomes. DPM@PL showed a shrapnel structure with average particle size 113.3 +/- 2.7 nm. The drug loading and encapsulation efficiency of DPM@PL were 1.93% and 99.02%, respectively. An obvious burst release (>90%) of drug was observed in the simulated tumor microenvironment with MMPs and reductive glutathione. The cellular uptake and cytotoxicity of DPM@PL in 4T1 cells were significantly enhanced after the pre-treatment of activated MMP-9. Compared with Taxotere (R), DPM@PL remarkably increased the distribution of DTX in lung and tumor of 4T1 tumor-bearing mice, and inhibited the in situ tumor growth and pulmonary metastasis formation effectively through the enhanced DTX-induced apoptosis and the reduced metastasis-promoting proteins expression. Compared with saline group, the inhibitory rates of DPM@PL against tumor volume and lung metastasis were about 81% and 92%, respectively, and it didn't produce the significant systemic toxicity. As a result, DPM@PL could be a promising nano delivery system for the successful therapy of breast cancer. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据