4.8 Article

Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 183, 期 -, 页码 417-425

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2015.11.010

关键词

Porous g-C3N4; Photocatalytic ozonation; Intermediates; Mechanism; Water treatment

资金

  1. National Natural Science Foundation of China [21207133]
  2. National Science Fund for Distinguished Young Scholars of China [51425405]

向作者/读者索取更多资源

Porous g-C3N4 (PGCN) has attracted enormous attention due to its accessible nanoporous framework benefiting photocatalytic reactions. Here, we reported a one-pot template-free method to fabricate honeycomb-like PGCN by simply mixing ammonia chloride with the precursor of g-C3N4 before calcination. The resulting PGCN exhibited obviously improved photocatalytic activity for p-hydroxybenzoic acid (PHBA) degradation under visible light due to its high surface area and enlarged band gap, but PHBA can hardly be mineralized in this process. Hence, for the first time, Vis/PGCN was coupled with ozone in this paper and the results showed that PGCN could trigger a vigorous synergy between photocatalysis and ozonation. Vis/O-3/PGCN led to almost complete mineralization of PHBA with an ozone dosage of 1.5 mg/min, and the process could be further accelerated by increasing the ozone dosage. Such a remarkable mineralization enhancement was mainly attributed to the systematically promoted generation of non-selective hydroxyl radicals ((OH)-O-center dot). The high CB level of PGCN benefited electron capture by ozone molecules, thus significantly enhanced charge separation and the decay of ozone into abundant (OH)-O-center dot. (OH)-O-center dot could vigorously react with PHBA and its ozone-recalcitrant intermediates such as the identified carboxylic acids, finally leading to thorough mineralization. Electrospray ionization-mass spectrometry was adopted to detect the evolution of degradation intermediates in ozonation and Vis/O-3/PGCN, and the mineralization procedure from the original PHBA to CO2 and H2O was comprehensively proposed. This study contributes to the integration of sunlight/PGCN with ozone as an efficient metal-free advanced oxidation process for water treatment. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据