4.8 Article

ROS-Responsive Polymeric siRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy

期刊

ADVANCED MATERIALS
卷 31, 期 37, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201903277

关键词

active targeting; combinational RNAi; glioblastoma; ROS-responsive; siRNA delivery

资金

  1. National Natural Science Foundation of China [NSFC 31600809, 31800841, U1604177, U1804139]
  2. National Key Technologies RAMP
  3. D Program of China [2018YFA0209800]
  4. Program of China's 1000-Talents Plan
  5. Key Research Program in Colleges and Universities of Henan Province [19zx006]
  6. Australian Endeavour Fellowship [69172018]
  7. Mason Foundation National Medical Program [MAS2017F034]
  8. National Health and Medical Research Council (NHMRC) Dementia Fellowship [APP1111611]

向作者/读者索取更多资源

Small interfering RNA (siRNA) holds inherent advantages and great potential for treating refractory diseases. However, lack of suitable siRNA delivery systems that demonstrate excellent circulation stability and effective at-site delivery ability is currently impeding siRNA therapeutic performance. Here, a polymeric siRNA nanomedicine (3I-NM@siRNA) stabilized by triple interactions (electrostatic, hydrogen bond, and hydrophobic) is constructed. Incorporating extra hydrogen and hydrophobic interactions significantly improves the physiological stability compared to an siRNA nanomedicine analog that solely relies on the electrostatic interaction for stability. The developed 3I-NM@siRNA nanomedicine demonstrates effective at-site siRNA release resulting from tumoral reactive oxygen species (ROS)-triggered sequential destabilization. Furthermore, the utility of 3I-NM@siRNA for treating glioblastoma (GBM) by functionalizing 3I-NM@siRNA nanomedicine with angiopep-2 peptide is enhanced. The targeted Ang-3I-NM@siRNA exhibits superb blood-brain barrier penetration and potent tumor accumulation. Moreover, by cotargeting polo-like kinase 1 and vascular endothelial growth factor receptor-2, Ang-3I-NM@siRNA shows effective suppression of tumor growth and significantly improved survival time of nude mice bearing orthotopic GBM brain tumors. New siRNA nanomedicines featuring triple-interaction stabilization together with inbuilt self-destruct delivery ability provide a robust and potent platform for targeted GBM siRNA therapy, which may have utility for RNA interference therapy of other tumors or brain diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据