4.8 Article

MXenes for Plasmonic Photodetection

期刊

ADVANCED MATERIALS
卷 31, 期 32, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201807658

关键词

flexible photodetectors; low-frequency Raman spectroscopy; molybdenum carbide; MXenes; surface plasmons

资金

  1. King Abdullah University of Science and Technology Funding Source: Medline

向作者/读者索取更多资源

MXenes have recently shown impressive optical and plasmonic properties associated with their ultrathin-atomic-layer structure. However, their potential use in photonic and plasmonic devices has been only marginally explored. Photodetectors made of five different MXenes are fabricated, among which molybdenum carbide MXene (Mo2CTx) exhibits the best performance. Mo2CTx MXene thin films deposited on paper substrates exhibit broad photoresponse in the range of 400-800 nm with high responsivity (up to 9 A W-1), detectivity (approximate to 5 x 10(11) Jones), and reliable photoswitching characteristics at a wavelength of 660 nm. Spatially resolved electron energy-loss spectroscopy and ultrafast femtosecond transient absorption spectroscopy of the MXene nanosheets reveal that the photoresponse of Mo2CTx is strongly dependent on its surface plasmon-assisted hot carriers. Additionally, Mo2CTx thin-film devices are shown to be relatively stable under ambient conditions, continuous illumination and mechanical stresses, illustrating their durable photodetection operation in the visible spectral range. Micro-Raman spectroscopy conducted on bare Mo2CTx film and on gold electrodes allowing for surface-enhanced Raman scattering demonstrates surface chemistry and a specific low-frequency band that is related to the vibrational modes of the single nanosheets. The specific ability to detect and excite individual surface plasmon modes provides a viable platform for various MXene-based optoelectronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据