4.8 Article

Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn-Air Batteries

期刊

ADVANCED MATERIALS
卷 31, 期 39, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201902339

关键词

bifunctional electrocatalysts; graphitic carbon; MnO; Co heterointerfaces; Zn-air batteries

资金

  1. National Research Foundation (NRF) of Singapore [NRF-NRFI2016-04]
  2. Ministry of Education of Singapore through Academic Research Fund (AcRF) Tier-1 [M4011783, RG5/17 (S)]
  3. National Natural Science Foundation of China [U1804255]

向作者/读者索取更多资源

Rational design and synthesis of highly active and robust bifunctional non-noble electrocatalysts for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for efficient rechargeable metal-air batteries. Herein, abundant MnO/Co heterointerfaces are engineered in porous graphitic carbon (MnO/Co/PGC) polyhedrons via a facile hydrothermal-calcination route with a bimetal-organic framework as the precursor. The in situ generated Co nanocrystals not only create well-defined heterointerfaces with high conductivity to overcome the poor OER activity but also promote the formation of robust graphitic carbon. Owing to the desired composition and formation of the heterostructures, the resulting MnO/Co/PGC exhibits superior activity and stability toward both OER and ORR, which makes it an efficient air cathode for the rechargeable Zn-air battery. Importantly, the homemade Zn-air battery is able to deliver excellent performance including a peak power density of 172 mW cm(-2) and a specific capacity of 872 mAh g(-1), as well as excellent cycling stability (350 cycles), outperforming commercial mixed Pt/C||RuO2 catalysts. This work highlights the synergy from heterointerfaces in oxygen electrocatalysis, thus providing a promising approach for advanced metal-air cathode materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据