4.8 Article

High-Temperature CO2 Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects

期刊

ADVANCED MATERIALS
卷 31, 期 50, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201902033

关键词

CO2 electrolysis; perovskites; solid oxide electrolysis cells

资金

  1. National Key R&D Program of China [2017YFA0700102]
  2. National Natural Science Foundation of China [21573222, 91545202, 21703237]
  3. Dalian National Laboratory for Clean Energy [DNL180404]
  4. Dalian Institute of Chemical Physics [DICP DMTO201702]
  5. Dalian Outstanding Young Scientist Foundation [2017RJ03]
  6. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB17020200]
  7. CAS Youth Innovation Promotion [2015145]

向作者/读者索取更多资源

High-temperature CO2 electrolysis in solid-oxide electrolysis cells (SOECs) could greatly assist in the reduction of CO2 emissions by electrochemically converting CO2 to valuable fuels through effective electrothermal activation of the stable C(sic)O bond. If powered by renewable energy resources, it could also provide an advanced energy-storage method for their intermittent output. Compared to low-temperature electrochemical CO2 reduction, CO2 electrolysis in SOECs at high temperature exhibits higher current density and energy efficiency and has thus attracted much recent attention. The history of its development and its fundamental mechanisms, cathode materials, oxygen-ion-conducting electrolyte materials, and anode materials are highlighted. Electrode, electrolyte, and electrode-electrolyte interface degradation issues are comprehensively summarized. Fuel-assisted SOECs with low-cost fuels applied to the anode to decrease the overpotential and electricity consumption are introduced. Furthermore, the challenges and prospects for future research into high-temperature CO2 electrolysis in SOECs are included.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据