4.8 Article

Self-Limiting Galvanic Growth of MnO2 Monolayers on a Liquid Metal-Applied to Photocatalysis

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 36, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201901649

关键词

2D; galvanic replacement; liquid metals; low melting point; MnO2

资金

  1. Australian Research Council (ARC) [FL180100053]
  2. ARC Center of Excellence FLEET [CE170100039]
  3. Australian Research Council [FL180100053] Funding Source: Australian Research Council

向作者/读者索取更多资源

Liquid metals offer unprecedented chemistry. Here it is shown that they can facilitate self-limiting oxidation processes on their surfaces, which enables the growth of metal oxides that are atomically thin. This claim is exemplified by creating atomically thin hydrated MnO2 using a Galvanic replacement reaction between permanganate ions and a liquid gallium-indium alloy (EGaIn). The liquid solution-liquid metal process leads to the reduction of the permanganate ions, resulting in the formation of the oxide monolayer at the interface. It is presented that under mechanical agitation liquid metal droplets are established, and simultaneously, hydrated gallium oxides and manganese oxide sheets delaminate themselves from the interfacial boundaries. The produced nanosheets encapsulate a metallic core, which is found to consist of solid indium only, with the full migration of gallium out of the droplets. This process produces core/shell structures, where the shells are made of stacked atomically thin nanosheets. The obtained core/shell structures are found to be an efficient photocatalyst for the degradation of an organic dye under simulated solar irradiation. This study presents a new research direction toward the modification and functionalization of liquid metals through spontaneous interfacial redox reactions, which has implications for many applications beyond photocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据