4.8 Article

Two-Dimensional Ti3C2Tx MXene Membranes as Nanofluidic Osmotic Power Generators

期刊

ACS NANO
卷 13, 期 8, 页码 8917-8925

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b02579

关键词

titanium carbide; MXene membranes; nanoconfined fluidic channels; surface charges; salinity gradient power generation

资金

  1. King Abdullah University of Science and Technology (KAUST) center applied research fund (CARF)
  2. Research Grants Council of the Hong Kong Special Administration Region, China [C7051 -17G]

向作者/读者索取更多资源

Salinity-gradient is emerging as one of the promising renewable energy sources but its energy conversion is severely limited by unsatisfactory performance of available semipermeable membranes. Recently, nanoconfined channels, as osmotic conduits, have shown superior energy conversion performance to conventional technologies. Here, ion selective nanochannels in lamellar Ti3C2Tx MXene membranes are reported for efficient osmotic power harvesting. These subnanometer channels in the Ti3C2Tx membranes enable cation-selective passage, assisted with tailored surface terminal groups, under salinity gradient. A record-high output power density of 21 W.m(-2) at room temperature with an energy conversion efficiency of up to 40.6% is achieved by controlled surface charges at a 1000-fold salinity gradient. In addition, due to thermal regulation of surface charges and ionic mobility, the MXene membrane produces a large thermal enhancement at 331 K, yielding a power density of up to 54 W.m(-2). The MXene lamellar structure, coupled with its scalability and chemical tunability, may be an important platform for high-performance osmotic power generators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据