4.8 Article

Equilibrium potassium coverage and its effect on a Ni tar reforming catalyst in alkali- and sulfur-laden biomass gasification gases

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 190, 期 -, 页码 137-146

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2016.03.007

关键词

Tar reforming; Biomass gasification; Ni-based catalyst; Potassium; Sulfur

资金

  1. Swedish Energy Agency
  2. academic and industrial partner (E.ON)
  3. academic and industrial partner (ANDRITZ)

向作者/读者索取更多资源

Biomass conversion to syngas via gasification produces certain levels of gaseous by-products, such as tar and inorganic impurities (sulfur, potassium, phosphorus etc.). Nickel, a commonly used catalyst for hydrocarbqn steam reforming, suffers reduced reforming activity by small amounts of sulfur (S) or potassium (K), while resistance against deleterious carbon whisker formation increases. Nevertheless, the combined effect of biomass derived gas phase alkali at varying concentrations together with sulfur on tar reforming catalyst performance under realistic steady-state conditions is largely unknown. Prior to this study, a methodology to monitor these effects by precise K dosing as well as K co-dosing with S was successfully developed. A setup consisting of a 5 kW biomass fed atmospheric bubbling fluidized bed gasifier, a high temperature hot gas ceramic filter, and a catalytic reactor operating at 800 degrees C were used in the experiments. Within the current study, two test periods were conducted, including 30 h with 1 ppmv potassium chloride (KCl) dosing followed by 6 h without KCl dosing. Besides an essentially carbon-free operation, it can be concluded that although K, above a certain threshold surface concentration, is known to block active Ni sites and decrease activity in traditional steam reforming, it appears to lower the surface S coverage (theta(s)) at active Ni sites. This reduction in theta(s) increases the conversion of methane and aromatics in tar reforming application, which is most likely related to K-induced softening of the S-Ni bond. The K-modified support surface may also contribute to the significant increase in reactivity towards tar molecules. In addition, previously unknown relevant concentrations of K during realistic operating conditions on typical Ni-based reforming catalysts are extrapolated to lie below 100 mu K/m(2), a conclusion based on the 10-40 mu K/m(2) equilibrium coverages observed for the Ni/MgAl2O4 catalyst in the present study. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据