4.8 Article

Ag-Bridged Z-Scheme 2D/2D Bi5FeTi3O15/g-C3N4 Heterojunction for Enhanced Photocatalysis: Mediator-Induced Interfacial Charge Transfer and Mechanism Insights

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 31, 页码 27686-27696

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b05074

关键词

Bi5FeTi3O15; ultrathin g-C3N4; bridged Ag nanoparticles; Z-scheme; DFT study

资金

  1. National Basic Research Program of China (973 Program) [2013CB632402]
  2. National Natural Science Foundation of China (NSFC) [51472194]
  3. Fundamental Research Funds for the Central Universities [2019-YB-026]

向作者/读者索取更多资源

Heterojunction photocatalysts have attracted widespread interest in photocatalysis because of their high-efficiency interfacial charge-transfer characteristics of nanoarchitectures. In this study, Ag-bridged 2D/2D Bi5FeTi3O15/ultrathin g-C(3)N(4 )Z-scheme heterojunction photocatalysts with powerful interfacial charge transfer has been synthesized via a facile ultrasound method coupled with a photoreduction strategy for efficient photocatalytic degradation of antibiotics. The morphology analysis displays that the bridged Ag nanoparticles were anchored on the interface of layered Bi5FeTi3O15 and ultrathin g-C3N4 nanosheets. Owing to its unique 2D/2D ternary heterostructure, the Bi5FeTi3O15/2%Ag/10% ultrathin g-C3N4 composite exhibited the best tetracycline degradation performance under visible-light and simulated solar irradiation. Meanwhile, the intermediates and degradation pathways were proposed by a liquid-phase mass spectrometry system. Characterizations and density functional theory studies together verify that the matched band structure of Bi5FeTi3O15 and g-C3N4 could induce a superfast Z-scheme interfacial charge-transfer path. More importantly, bridged Ag nanoparticles in the 2D/2D heterojunction extended the light absorption range and prolonged the lifetime of photogenerated electron-holes induced by Bi5FeTi3O15. This work affords a promising approach for designing multicomponent Z-scheme heterojunction photocatalysts for highly efficient photocatalytic application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据