4.8 Article

Layer-Dependent Interfacial Transport and Optoelectrical Properties of MoS2 on Ultraflat Metals

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 34, 页码 31543-31550

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b09868

关键词

MoS2; electronic transport; photoconductivity; photoconductive AFM; metal-MoS2 junction; Schottky barriers; density functional theory; layer dependence

资金

  1. San Francisco State University (SFSU)
  2. Center for Computing for Life Sciences at SFSU
  3. NSF [NSF MRI-CMMI 1626611, ECCS-1542152]
  4. National Science Foundation [ECCS-1708907]
  5. Department of Defense [72495RTREP]
  6. Stanford Non-Volatile Memory Technology Research Initiative (NMTRI)
  7. SRC [2532.001]

向作者/读者索取更多资源

Layered materials based on transition-metal dichalcoge-nides (TMDs) are promising for a wide range of electronic and optoelectronic devices. Realizing such practical applications often requires metal-TMD connections or contacts. Hence, a complete understanding of electronic band alignments and potential barrier heights governing the transport through metal-TMD junctions is critical. However, it is presently unclear how the energy bands of a TMD align while in contact with a metal as a function of the number of layers. In pursuit of removing this knowledge gap, we have performed conductive atomic force microscopy (CAFM) of few-layered (1 to 5 layers) MoS2 immobilized on ultraflat conducting Au surfaces [root-mean-square (rms) surface roughness < 0.2 nm] and indium-tin oxide (ITO) substrates (rms surface roughness < 0.7 nm) forming a vertical metal (CAFM tip)-semiconductor-metal device. We have observed that the current increases with the number of layers up to five layers. By applying Fowler-Nordheim tunneling theory, we have determined the barrier heights for different layers and observed how this barrier decreases as the number of layers increases. Using density functional theory calculations, we successfully demonstrated that the barrier height decreases as the layer number increases. By illuminating TMDs on a transparent ultraflat conducting ITO substrate, we observed a reduction in current when compared to the current measured in the dark, hence demonstrating negative photoconductivity. Our study provides a fundamental understanding of the local electronic and optoelectronic behaviors of the TMD-metal junction, which depends on the numbers of TMD layers and may pave an avenue toward developing nanoscale electronic devices with tailored layer-dependent transport properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据