4.8 Article

Sulfur-Doped Mesoporous Carbon Nitride with an Ordered Porous Structure for Sodium-Ion Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 30, 页码 27192-27199

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b07657

关键词

heteroatom; sulfur; doping; carbon nitride; ordered structure; sodium ion battery; anode

资金

  1. Australian Research Council (ARC) [DE170101069]
  2. Australian Synchrotron
  3. University of Newcastle
  4. Australian Research Council [DP 170104478, DP 150104828]
  5. Australian Research Council [DE170101069] Funding Source: Australian Research Council

向作者/读者索取更多资源

Mesoporous carbon nitride (MCN) with well-ordered porous structures is a promising anode material for secondary ion batteries owing to their unique physico- and electrochemical properties. However, the practical application of these MCNs in sodium-ion batteries (SIBs) is still limited because of their confined interlayer distance, which results in restricted accommodation of Na ions inside the lattice. Here, we report on the synthesis of highly ordered sulfur-doped MCN (S-MCN) through a hard template approach by employing dithiooxamide (DTO) as a single molecular precursor containing carbon, nitrogen, and sulfur elements. The interlayer distance of carbon nitride is significantly expanded upon the introduction of larger S ions on the MCN lattice, which enables high capability of Na ion accommodation. We also demonstrate through the first-principles density functional theory calculation that the present S-MCN is highly optimized not only for the chemical structure but also for uptaking abundant Na ions with high adsorption energy. The specific discharge capacity of SIBs appears to be remarkably enhanced for S-MCN (304.2 mA h g(-1)) compared to the nonporous S-CN (167.9 mA h g(-1)) and g-C3N4 (5.4 mA h g(-1)), highlighting the pivotal roles of the highly ordered mesoporous structure and S-doping in enhancing the electrochemical functionality of carbon nitride as an anode material for SIBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据