4.8 Article

Thermosensitive Display of Carbohydrate Ligands on Microgels for Switchable Binding of Proteins and Bacteria

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 30, 页码 26674-26683

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b08537

关键词

responsive material; temperature stimulus; LCST; PNIPAM; glycocalyx; lectin; multivalent binding

资金

  1. German Research foundation (DFG) [SCHM 2748/5-1]

向作者/读者索取更多资源

The synthesis of carbohydrate-functionalized thermosensitive poly(N-isopropylacrylamide) microgels and their ability to bind carbohydrate-binding pathogens upon temperature switch are reported. It is found that the microgels' binding affinity is increased above their lower critical solution temperature (LCST), enabling thermo-triggerable capture of pathogens. Here, a series of microgels with comparatively low mannose functionalization degrees below 1 mol % is achieved by a single polymerization step. Upon increase in mannose density, the microgel size increases, and the LCST decreases to 26 degrees C. Clustering with concanavalin A indicated that binding affinity is enhanced by a higher mannose content and by raising the temperature above the LCST. Binding studies with Escherichia coli confirm stronger specific interactions above the LCST and formation of mechanically stable aggregates enabling efficient separation of E. coli by filtration. For small incubation times above the LCST, the microgels' potential to release pathogens again below the LCST is confirmed also. Compared to existing switchable scaffolds, microgels nearly entirely composed of a thermosensitive material undergo a large change in volume, which allows them to drastically vary the density of ligands to switch between capture and release. This straightforward yet novel approach is likely compatible with a broad range of bioactive ligands. Therefore, thermosensitive microgels represent a promising platform for the specific capture or release of cells or pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据